The images above use daily precipitation statistics from NWS COOP, CoCoRaHS, and CoAgMet stations. From top to bottom, and left to right: most recent 7-days of accumulated precipitation in inches; current month-to-date accumulated precipitation in inches; last month's precipitation as a percent of average; water-year-to-date precipitation as a percent of average.

Standardized Precipitation Index
Standardized Precipitation Index standardizes precipitation accumulations for a specified time period into percentile rankings. -1.0 to -1.5 is equivalent to a D1 to D2. -1.5 to -2.0 is equivalent to a D2 to D3. -2.0 and worse is equivalent to a D3 to D4. 30- and 60-day SPIs focus on short-term conditions while 6- and 9-month SPIs focus on long-term conditions. SPI data provided by High Plains Regional Climate Center.

Snotel and Snowpack
The top left image shows the Natural Resources Conservation Service's SNOTEL water-year-to-date precipitation percentile rankings. The top right image shows sub-basin averaged snow water equivalent accumulations as a percent of average. The images below show accumulated snow water equivalent in inches (green) compared to average (blue) and last year (red) for several different sub-basins across the UCRB (and were created by the Colorado Basin River Forecast Center).

Streamflow
The top left image shows 7-day averaged streamflows as a percentile ranking across the UCRB. The top right image shows 7-day averaged discharge over time at three key sites around the UCRB: The Colorado River at the CO-UT state line; the Green River at Green River, UT; and the San Juan River near Bluff, UT. All streamflow data provided by United States Geological Survey.

Surface Water

The top left image shows VIC modeled soil moisture as a percentile ranking. The top right image shows satellite-derived vegetation from the VegDRI product (which updates on Mondays).

The graphs shown below are plots of reservoir volumes over the past full year and current year to date (black). The dashed line at the top of each graphic indicates the reservoir's capacity, and the background color-coded shading provides context for the range of reservoir

http://climate.colostate.edu/~drought/current_assessment.php
levels observed over the past 30 years. The data are obtained from the Bureau of Reclamation. Some of the reservoir percentiles don't line up at the new year due to differences in reservoir levels at the beginning of 1985 and the end of 2014. Dead storage has been subtracted. Note: Lake Granby data are obtained from the Colorado Division of Water Resources, and only goes back to the year 2000.

Evaporative Demand

http://climate.colostate.edu/~drought/current_assessment.php
The above images are available courtesy of NOAA's Evaporative Demand Drought Index (EDDI). Drought classification listed is a function of the depth of reference evapotranspiration accumulated over a given period of record with respect to a climatology of 1981-2010. The drought categories displayed are in line with the US Drought Monitor's Percentile Ranking Scheme. Data used to generate these maps come from the North American Land Data Assimilation System Phase-2 (NLDAS-2) project, which assimilates observations of temperature, wind speed, radiation, and vapor pressure deficit. The date indicates the last day of the period of record, and the week number indicates the window size for the period of record.

Temperature

All images show temperature departures from average over different time periods (last 7 days on top left; month-to-date on top right; last full month on bottom). Temperature departure maps provided by HPRCC ACIS.
Outlook
The top two images show Climate Prediction Center's Precipitation and Temperature outlooks for 8 - 14 days. The middle image shows the Weather Prediction Center's Quantitative Precipitation Forecast accumulation for seven days. The bottom left image shows the 3-month precipitation outlook from Climate Prediction Center, and the bottom right image shows the Climate Prediction Center's most recent release of the U.S. Seasonal Drought Outlook.

Summary and Recommendations
Above is the most recent release of the U.S. Drought Monitor map for the UCRB region. Below shows the proposed changes for this week, with supporting text.
Summary: June 13, 2017

June has been hot and dry for much of the Intermountain West region. Last week, most of Utah saw no precipitation, and most of the Upper Colorado River Basin has received less than a quarter of an inch since the beginning of the month. While this is normally a dry season for the area, it is still a bit drier than average. Drier vegetation, combined with windy conditions, low relative humidities, and lightning activity, have resulted in the onset several wildfires in western Colorado, central Utah, and throughout Arizona and New Mexico.

Larger precipitation accumulations remained east of the Continental Divide, with frequent thunderstorm activity across the Front Range and eastern plains. Hail, and even a tornado, were reported in northern Colorado and southern Wyoming.

Runoff season is still in high gear as the remaining snowpack melts out in the UCRB. The majority of the southwestern basins have completed melted out.
Streamflows are in excellent condition, with only 2% of gages reporting below the normal range and 55% of gages reporting above the normal range. Inflows into Lake Powell are still healthy, with the reservoir reporting levels above the 30th percentile.

Soil moisture and vegetation conditions are pretty reflective of where rain has or has not fallen recently. Both show dryness or stress in western Colorado, eastern Utah, and southern Arizona, with closer to average or wetter conditions across eastern Colorado and into Wyoming.

While temperatures have been warmer, evaporative demand is still relatively low. Cumulative ET is a bit higher than average in western Colorado, but remains lower than average for the rest of Colorado.

The outlook for the next couple of weeks over the IMW calls for a continuation of mostly warm and dry conditions. It's not uncommon to get some localized convective afternoon thunderstorms this time of year though.

Recommendations

UCRB: Status quo is recommended. While drier than average conditions persist, this is normally a dry time of year. Impacts are limited, mostly wildfires (which are only partially a result of drought, more a result of local meteorological conditions). The area will continue to be closely monitored for worsening conditions.

Eastern Colorado: Status quo is recommended.